## Multiple causes of death. Overview, applications.



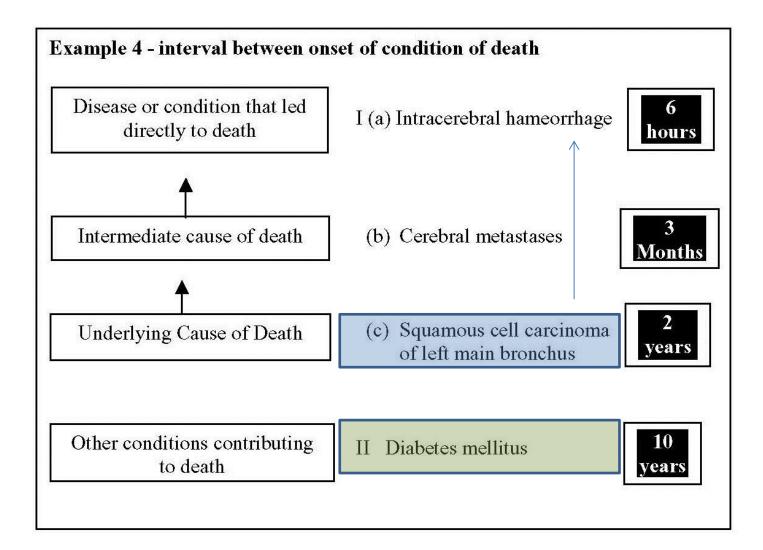
#### Markéta Pechholdová INED / University of Economics in Prague

Lithuanian Social Research Centre Teaching seminar "Causes of death: data and methods of analysis" February 23-24, 2015 Vilnius pechholdova@gmail.com



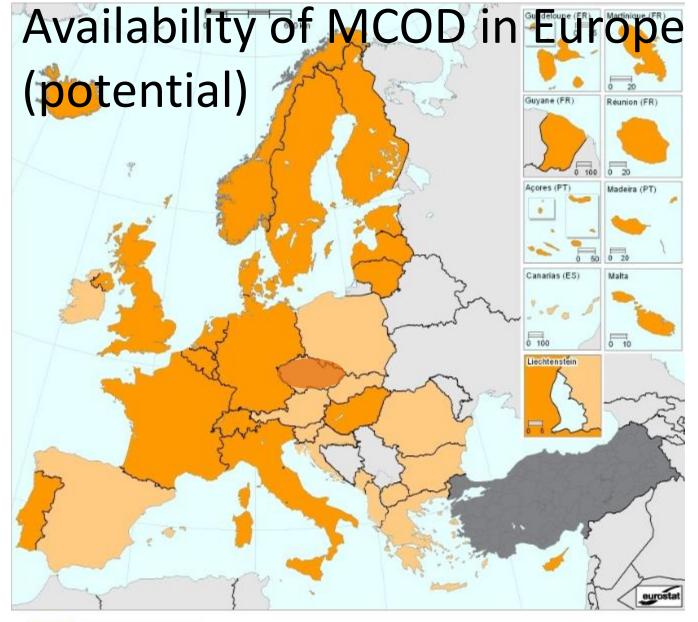
The research is funded by EU structural assistance (European Social Fund) to Lithuania under the measure VP-1-3.1-ŠMM-07-K "Support to Research Activities of Scientists and Other Researchers (Global Grant)" project Nr. VP-1-3.1-ŠMM-07-K-02-067

## An outlook


- In spite of the complexity of morbidity processes, statisticians have always sought to reduce the information to a single cause
- Statistics based on the underlying overestimate fatal diseases while masking information about broader health status
- Multiple cause-of-death data represent the most complex & unexplored source of statistical information about death

### Death certificate

| CAUS                                                                               | Approximate<br>interval between<br>onset and death |  |  |
|------------------------------------------------------------------------------------|----------------------------------------------------|--|--|
| I<br>Disease or condition<br>Directly leading to death*                            | (a)<br>due to (or as a consequence of)             |  |  |
| Antecedent causes<br>Morbid conditions, if any,<br>giving rise to the above cause, | (b)<br>due to (or as a consequence of)             |  |  |
| stating the underlying<br>condition last                                           | (c)<br>due to (or as a consequence of)             |  |  |
|                                                                                    | (d)                                                |  |  |
| II<br>Other significant conditions<br>contributing to the death, but               |                                                    |  |  |
| not related to the disease or<br>condition causing it                              |                                                    |  |  |


\* This means the disease, injury or complication which caused death NOT ONLY, for example, the mode of dying, such as "heart failure, asthenia", etc.

#### Death certificate – an example



## Methodological issues

- Unavailable not mandatory
- Unstandardized how many causes will be kept & published? What about encoding proces?
- Unclear when 20 multiple causes are given, which were used as a part of the morbid chain caused by the primary condition? What if the UCD is none of the MCOD?



UC available MCOD + UC available Data not available

Administrative boundaries: © EuroGeographics © UN-FAO © Turkstat Cartography: Eurostat, European Commission Source: Eurostat metadata

#### What needs to be done (Pace et al. 2011):

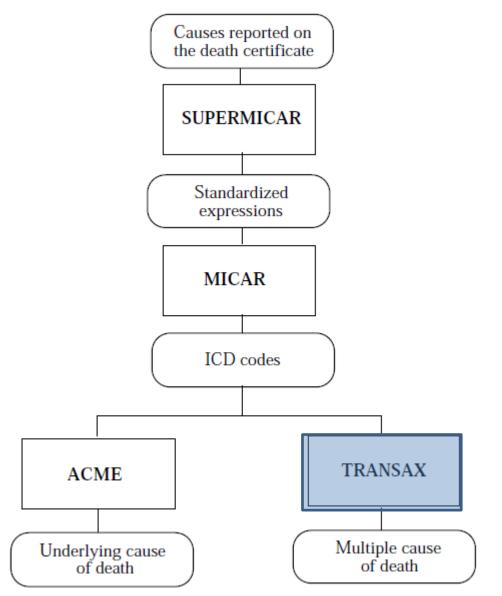
- The IRIS implementation
- The establishment of a set of internationally agreed rules and methodologies on coding and data processing, including quality assessment
- An agreed list of indicators for dissemination
- Institutional commitment reflected in decisions and regulations
- "The coding of multiple cause using ICD10 is another powerful reason to adopt automated coding systems" (Pavillon).

## Coding related issues

- Different coding rules for underlying and multiple causes
- Example: diabetes (250.0) and coma (780.0)
- For UCD: both conditions are encoded as separate medical entities (important for the chain of events)

#### - entity axis

 For MCOD: the preferred code is diabetic coma (250.2) (the whole record is considered)
– record axis

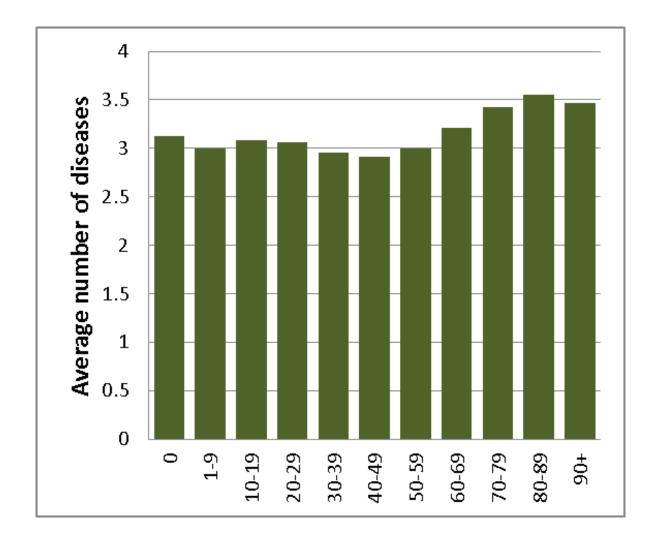

#### Another example

- On the same record as separate entities: cirrhosis of liver and alcoholism
  - Entity axis: 5715 (cirrhosis of liver without mention of alcohol) and 303 (alcohol dependence syndrome).
  - Record axis: 5712 (alcoholic cirrhosis of liver)

## TRANSAX

- **TRANS**lation of **AX**is in MCOD coding, the entity axis is converted into record (person) axis
- TRANSAX identifies the relationship between conditions mentioned on the death certificate, and then assigns an ICD code for any significant combinations (linkage). Detail and positions may be lost.
- MCOD record-axis data are not the data on which UCD was selected
- ACME no linkage applied before selection of UCD (not to interfere with physician's opinion)

## Fully automated coding system




#### Analytical approaches

## Comorbidity extent CZ, 2011

| Number of multiple causes per death<br>certificate (%) |      |      |      |      |     | Average number of multiple causes per death certificate |
|--------------------------------------------------------|------|------|------|------|-----|---------------------------------------------------------|
| 1                                                      | 2    | 3    | 4    | 5    | 6+  |                                                         |
| 8.7                                                    | 21.7 | 26.3 | 20.8 | 13.4 | 9.1 | 3.4                                                     |

# Average number of causes on certificate by age, CZ 2011



## Different aims (Egidi et al. 2011)

- Evaluating the quality of certification and coding (D'Amico et al 1999; Mannino et al. 1997)
- Evaluating the "burden" of diseases (Manton, Stallard 1982; Romon et al 2008; Yu-Pei Lin, Tsung-Hsueh Lu 2012)
- Improving estimates of the effect of specific risk factors on diseases (Nelson et al. 1994; Mannino et al. 1998)
- Exploring associations between causes of death (Redelings et al. 2007)
- Testing independence of competing risks (dependent competing risks models (Chiang, 1968), cause-deleted table (Manton et al. 1976, 1979; Manton, Stallard 1990)

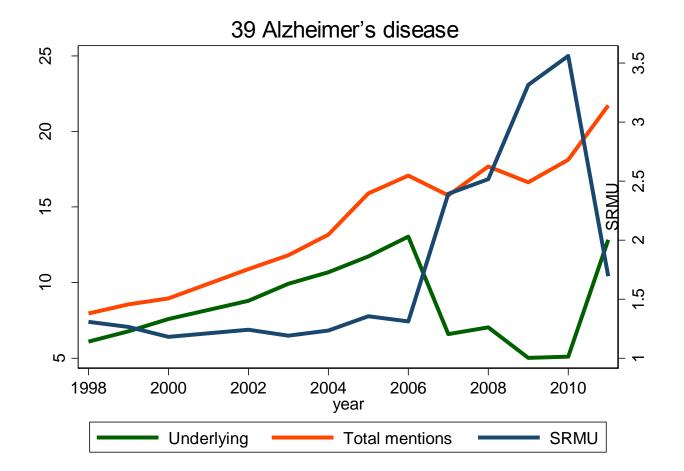
## Different aims (Egidi et al. 2011)

- Evaluating the quality of certification and coding (D'Amico et al 1999; Mannino et al. 1997)
- Evaluating the "burden" of diseases (Manton, Stallard 1982; Romon et al 2008; Yu-Pei Lin, Tsung-Hsueh Lu 2012)
- Improving estimates of the effect of specific risk factors on diseases (Nelson et al. 1994; Mannino et al. 1998)
- Exploring associations between causes of death (Redelings et al. 2007)
- Testing independence of competing risks (dependent competing risks models (Chiang, 1968), cause-deleted table (Manton et al. 1976, 1979; Manton, Stallard 1990)

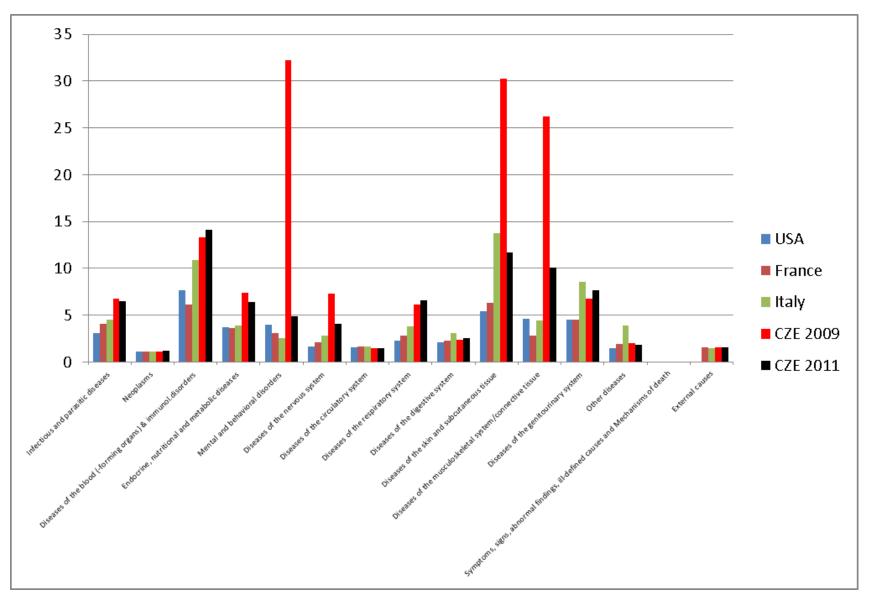
## Total to underlying mentions

- Total mentions the real burden of the disease
- Total to underlying ratio: the level of underestimation
- Standardized Ratio of Multiple to Underlying cause (SRMU)
- Controlled for population structures (age, gender)

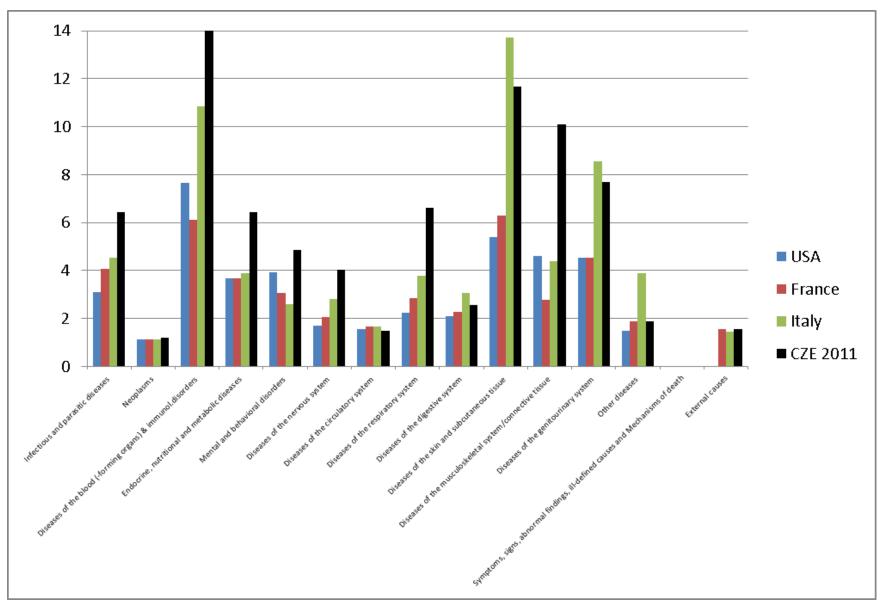
$$SRMU_{i} = \frac{\sum_{x} MCOD_{x}^{i} p^{st} x}{\sum_{x} UCD_{x}^{i} p^{st} x}$$


## Estimating burden of disease: highest SRMU (CZ, 2011)

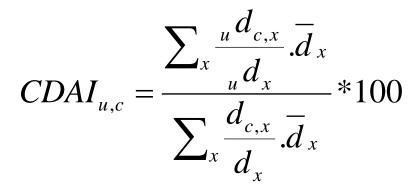
| Other mental and behavioural disorders                     | 29.1 |  |  |  |  |
|------------------------------------------------------------|------|--|--|--|--|
| Disorders of thyroid gland                                 | 20.4 |  |  |  |  |
| Rheumatoid arthritis and osteoarthrosis                    |      |  |  |  |  |
| Obesity                                                    | 14.4 |  |  |  |  |
| Diseases of the blood(-forming organs) & immunol.disorders | 14.3 |  |  |  |  |
| Hyperplasia of prostate                                    | 12.9 |  |  |  |  |
| Pneumonia                                                  | 12.1 |  |  |  |  |
| Diseases of the skin and subcutaneous tissue               | 11.9 |  |  |  |  |
| Hypertensive diseases                                      | 10.9 |  |  |  |  |
| Other endocrine, nutritional and metabolic diseases        | 10.7 |  |  |  |  |
| Septicaemia                                                | 10.3 |  |  |  |  |
| Renal Failure                                              | 9.9  |  |  |  |  |
| Drug dependence, toxicomania                               | 9.6  |  |  |  |  |
| Malnutrition and other nutritional deficiencies            | 9.2  |  |  |  |  |
| Other diseases of the nervous system                       | 8.7  |  |  |  |  |
| Other diseases of the respiratory system                   | 8.4  |  |  |  |  |
| Other diseases of the genitourinary system                 | 7.4  |  |  |  |  |
| Other diseases of the musculoskeletal system/connective    | 7.2  |  |  |  |  |
| Other acute lower respiratory diseases                     | 7.2  |  |  |  |  |
|                                                            |      |  |  |  |  |


## Lowest SRMU (CZ, 2011)

| Accidental falls                                               | 1.4 |  |  |  |  |
|----------------------------------------------------------------|-----|--|--|--|--|
| Malignant neoplasm of cervix uteri and other parts of uterus   | 1.3 |  |  |  |  |
| Malignant melanoma of skin                                     |     |  |  |  |  |
| Malignant neoplasm of eye, brain and other parts of central    | 1.3 |  |  |  |  |
| Malignant neoplasm of small intestine, colon, rectum and anus, | 1.3 |  |  |  |  |
| Malignant neoplasm of lymph./haematopoietic tissue             | 1.3 |  |  |  |  |
| Malignant neoplasm of liver, the intrahepatic bile ducts,      | 1.2 |  |  |  |  |
| Malignant neoplasm of lip, oral cavity, pharynx                | 1.2 |  |  |  |  |
| Malignant neoplasm of stomach                                  | 1.2 |  |  |  |  |
| Malignant neoplasm of oesophagus                               | 1.2 |  |  |  |  |
| Malignant neoplasm of ovary                                    | 1.2 |  |  |  |  |
| Accidental poisoning                                           | 1.2 |  |  |  |  |
| Malignant neoplasm of larynx and trachea/bronchus/lung         | 1.1 |  |  |  |  |
| Transport accidents                                            | 1.1 |  |  |  |  |
| Suicide/intentional self-harm                                  | 1.1 |  |  |  |  |
| Malignant neoplasm of pancreas                                 | 1.1 |  |  |  |  |
| AIDS (HIV-disease)                                             | 1.0 |  |  |  |  |


#### Evaluate coding practices (CZ, 1998-2011)




#### Evaluating international comparability



#### Without CZ 2009



# CDAI (cause-of-death association indicator)



where  ${}_{u}d_{c,x}$  = number of deaths observed at age *x* with underlying cause *u* and contributing cause *c*;  ${}_{u}d_{c,x}$  = the number of deaths observed at age *x* with cause *u* as the underlying cause;

 $d_{c,x}$  = the total number of deaths observed at age x with cause c as the contributing cause (regardless of the underlying cause);

 $d_x$  = the total number of deaths observed at age *x* (regardless of the underlying cause);

 $d_x$  = the standard number of deaths at age x (based on the 2009 WHO life table for high-income countries).

#### Associations between diseases, CZ 2011

| UCD    | MCD  |     |       |       |      |      |      |      |       |      |      |       |       |      |
|--------|------|-----|-------|-------|------|------|------|------|-------|------|------|-------|-------|------|
| 0.02   | INF  | NEO | BLOOD | ENDOC | MENT | NERV | CIRC | RESP | DIGES | SKIN | MUSC | GENIT | OTHER | EXT  |
| INF    | 366  | 62  | 122   | 127   | 96   | 97   | 87   | 89   | 275   | 308  | 145  | 209   | 137   | 46   |
| NEO    | 83   | 296 | 205   | 99    | 48   | 66   | 85   | 95   | 123   | 33   | 79   | 98    | 80    | 25   |
| BLOOD  | 293  | 63  | 683   | 110   | 45   | 123  | 86   | 87   | 138   | 53   | 157  | 143   | 31    | 30   |
| ENDOC  | 237  | 53  | 125   | 153   | 100  | 81   | 107  | 107  | 93    | 250  | 117  | 234   | 20    | 42   |
| MENT   | 126  | 30  | 60    | 122   | 317  | 125  | 96   | 179  | 69    | 322  | 137  | 89    | 0     | 59   |
| NERV   | 123  | 43  | 73    | 98    | 453  | 220  | 80   | 155  | 61    | 245  | 142  | 104   | 146   | 59   |
| CIRC   | 61   | 52  | 62    | 107   | 97   | 121  | 114  | 92   | 65    | 95   | 100  | 88    | 119   | 43   |
| RESP   | 164  | 58  | 67    | 95    | 122  | 113  | 97   | 164  | 73    | 72   | 102  | 100   | 124   | 34   |
| DIGES  | 359  | 61  | 170   | 90    | 81   | 62   | 82   | 83   | 547   | 34   | 34   | 129   | 98    | 40   |
| SKIN   | 1275 | 10  | 69    | 155   | 167  | 67   | 89   | 74   | 81    | 445  | 202  | 153   | 0     | 11   |
| MUSC   | 491  | 28  | 308   | 121   | 10   | 55   | 75   | 141  | 48    | 53   | 845  | 178   | 177   | 97   |
| GENIT  | 511  | 54  | 183   | 111   | 79   | 39   | 97   | 85   | 96    | 140  | 96   | 402   | 108   | 37   |
| OTHER  | 114  | 40  | 48    | 88    | 36   | 122  | 79   | 74   | 16    | 0    | 64   | 218   | 627   | 123  |
| ILLDEF | 69   | 71  | 25    | 63    | 129  | 151  | 100  | 56   | 54    | 128  | 179  | 48    | 165   | 82   |
| EXT    | 77   | 37  | 67    | 64    | 107  | 105  | 71   | 112  | 46    | 181  | 69   | 58    | 29    | 1107 |

#### MultiCause Network (Désesquelles, 2014

- An international network devoted to the MCOD approach
- To foster analysis based on MCOD data
- To develop common standards and make cross-country comparisons
- Scientific meeting every two-years : Paris (2012), Rome (2014), Prague (2016)

## MultiCause results

- Désesquelles, A., Salvatore, M.A., Frova, L., Pace, M., Pappagallo, M., Meslé, M., & Egidi, V. (2010). Revisiting the mortality of France and Italy with the multiple-cause-of-death approach. *Demographic research*, 23(28): 71-806.
- Désesquelles, A., Salvatore, M.A., Pappagallo, M., Frova, L., Pace, M., Meslé, F., & Egidi, V. (2012). Analysing Multiple Causes of Death: Which Methods For Which Data? An Application to the Cancer-Related Mortality in France and Italy. *European Journal of Population*, 28.
- Désesquelles A., Demuru E., Egidi V., Frova L., Meslé F., Pappagallo M., Salvatore M.A. (2014). «Cause-specific mortality analysis: is the underlying cause of death sufficient?. *Quetelet Journal*, 1 (2): 119-135
- Désesquelles A., Demuru E., Salvatore M.A., Pappagallo M., Frova L., Pace M., Meslé F., Egidi V. (2014). Mortality from Alzheimer's disease, Parkinson's disease and dementias in France and Italy: a comparison using the multiple cause-of-death approach, *Journal of Aging and Health*, 26 (2): 283 315.
- Pechholdová M., (2014). Multiple causes of death in the Czech Republic: an exploratory analysis, Demografie, 56(4):335–346.

## Summary

- A bit more issues than with UCD data
- Two types of MCOD data: entity-axis and record-axis
- Automated coding improves comparability
- Need to enhance standardization procedures (collection, analysis)
- The results are valuable and innovative

The research is funded by EU structural assistance (European Social Fund) to Lithuania under the measure VP-1-3.1-ŠMM-07-K "Support to Research Activities of Scientists and Other Researchers (Global Grant)" project Nr. VP-1-3.1-ŠMM-07-K-02-067

